1391

Nuclear Magnetic Resonance Coupling Constants for a Bis(dioxaphosphorinanyl)

By R. K. HARRIS* and J. R. WOPLIN

(School of Chemical Sciences, University of East Anglia, Norwich NOR 88C)

and W. $\ensuremath{\mathsf{STEC}}$

(Polish Academy of Sciences, Institute of Organic Chemistry, Zwirki 36, Łódź 40, Poland)

Summary ${}^{1}H{-}{}^{31}P$ heteronuclear double resonance experiments on compound (I) show that ${}^{1}J_{PP}$ and all ${}^{3}J_{HP}$ and ${}^{4}J_{HP}$ have the same sign, presumably positive.

THE effect of substituents on spin-spin coupling constants between two directly-bonded phosphorus nuclei has been the subject of controversy recently.¹⁻⁶ In most cases the sign of ${}^{1}J_{PP}$ is unknown. The limited amount of information available has led to an incorrect prediction^{2,5} for the sign of ${}^{1}J_{PP}$ for P₂F₄. Theoretical calculations have also^{3,4} been incorrect as to sign. The topic is of importance because (P,P) coupling is unique in that it is the only type of homonuclear coupling for second-row elements of the Periodic Table that it is feasible to study in detail. This arises because the ³¹P nucleus occurs in 100% natural abundance and has a spin quantum number of $\frac{1}{2}$, and also because phosphorus has a rich chemistry.

We have carried out heteronuclear ${}^{1}H-{}^{31}P$ double resonance experiments on bis- $(P^{1}-\infty -P^{2}-\text{thiono-5,5-di-}$ methyl-1,3,2-dioxaphosphorinanyl) (I), prepared as described by Stec and Zwierzak.⁷ The spin system for this molecule is in principle complicated, but in practice a semifirst-order treatment suffices to explain the observed spectral features. At 100 MHz the equatorial protons [for a solution of (I) in CDCl₃] give rise to a region of the spectrum containing many transitions. The low-frequency and highfrequency extremes of this region show a doublet of triplets pattern. The doublet splitting is due to ${}^{4}J_{HP}$ and the triplet splitting arises from the AA'MM' nature of the four CH₂ protons of a given ring. Each of the doublet of

triplets mentioned may be assigned to the equatorial protons of a given ring for specified spin states of the appropriate geminal proton and of the nearer ⁸¹P nucleus. Irradiation with 'tickling' or partial decoupling radiofrequency powers⁸ at ca. 40 MHz allows the investigation of the ³¹P region of the spectrum, including a breakdown according to subspectral principles.⁹ Thus the relative signs of ${}^{3}J_{HP}$, ${}^{4}J_{HP}$, and ${}^{1}J_{PP}$ are found. Our experiments show that all these coupling constants have the same sign. The magnitude of ${}^{1}J_{PP}$ was found only approximately by this procedure to be 475 \pm 40 Hz. Since ${}^{3}J_{\rm HP}$ is well-known to be positive through intervening carbon and oxygen,10,11 we conclude that ${}^{1}J_{PP}$ is also positive in (I).

Prior to this work, only one sign of ${}^{1}J_{PP}$ between two quinquevalent (tetra-co-ordinate) phosphorus atoms was

- ¹ E. G. Finer and R. K. Harris, Mol. Phys., 1967, 12, 457.
- ² E. G. Finer and R. K. Harris, Chem. Comm., 1968, 110.
- ⁵ A. H. Cowley and W. D. White, J. Amer. Chem. Soc., 1969, 91, 1917.
 ⁴ A. H. Cowley, W. D. White, and M. C. Damasco, J. Amer. Chem. Soc., 1969, 91, 1922.
 ⁵ R. W. Rudolph and R. A. Newmark, J. Amer. Chem. Soc., 1970, 92, 1195.
 ⁶ E. G. Finer and R. K. Harris, Progr. NMR Spectroscopy, to be published.
 ⁷ W. Stea and A. Twiserol, Counc. Low. 1067, 45 (2012).

- ⁹ W. Stec and A. Zwierzak, Canad. J. Chem., 1967, 45, 2513.
 ⁸ R. A. Hoffman and S. Forsén, Progr. NMR Spectroscopy, 1966, 1, 15.
 ⁹ P. Diehl, R. K. Harris, and R. G. Jones, Progr. NMR Spectroscopy, 1967, 3, 1.
 ¹⁰ E. Duval and G. E. Béné, Helv. Phys. Acta, 1967, 40, 501.

¹¹ W. McFarlane, J. Chem. Soc. (A), 1967, 1148.
 ¹² R. M. Lynden-Bell, Trans. Faraday Soc., 1961, 57, 888.
 ¹³ R. K. Harris and R. G. Hayter, Canad. J. Chem., 1964, 42, 2282.
 ¹⁴ C. J. Jameson, J. Amer. Chem. Soc., 1969, 91, 6232; C. Schumann, H. Dreeskamp, and O. Stelzer, Chem. Comm., 1970, 619; H. Dreeskamp, C. Schumann, and R. Schmutzler, *ibid.*, p. 671; J. P. Albrand and D. Gagnaire, *ibid.*, p. 874.

known,² that for the ion $HP_2O_5^{3-}$. This was also suggested to be large and positive but the evidence for the sign was less convincing than in the present example since it was based on a sign for ${}^{2}J_{HP}$ through phosphorus in a case with which there were no close parallels with well-established signs. In contrast to these two positive values for ${}^{1}\!J_{\rm PP}$, several negative signs 1,5,12,13 have been measured for cases involving two tervalent ³¹P nuclei or one tervalent and one quinquevalent phosphorus. The present result therefore supports the contention of Rudolph and Newmark⁵ that $J_{\mathbf{P}^{\mathbf{m}}\mathbf{P}^{\mathbf{m}}}$ may be in general negative whereas ${}^{1}J_{\mathbf{P}}\mathbf{v}_{\mathbf{P}}\mathbf{v}$ may be in general positive (through some of the latter class of compounds such as $Me_2P(:S)P(:S)Me_2$, have low magnitudes for ${}^{1}J_{PP}$, which may therefore be of either sign). This may in some respects parallel the case for ${}^{1}J_{CP}$.¹⁴ The trend of ${}^{1}J_{PP}$ with the nature of substituents remains a matter for speculation at present.

Note added in proof. A value of ${}^{1}J_{PP} = +720$ Hz has recently been measured for $Me_3P \rightarrow PF_5$ (C. W. Schultz and R. W. Rudolph, personal communication).

(Received, September 9th, 1970; Com. 1534.)